Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 112(3): e35395, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433609

RESUMO

6-Mercaptopurine (6MP) is commonly used in the treatment of acute lymphoblastic leukemia as an important agent in maintenance therapy. Despite its therapeutic benefits, 6MP has some limitations during therapy. Taking into account the disadvantages during 6MP therapy, there is a great need to create an appropriate delivery system for this drug. 6MP contains in its structure nitrogen and sulfur atoms capable of forming coordination compounds with metal ions, for example zinc. Therefore, in this work, we prepared biocompatible hydroxyapatite (HAp) doped with zinc ions, and used it as a carrier for 6MP. Doped HAp has not been used as a carrier for this drug before. The work proved that the prepared carrier-drug system has a particle size of about 130 nm, which indicates its potential for intravenous delivery. In addition, in an acidic environment (imitating cancer cells), the carrier agglomerates allow targeted release of the drug. The drug is evenly distributed, which indicates that the doses released from it will always be comparable. The release of the drug in a neutral environment is long-lasting in controlled doses, whereas in an acidic environment it is immediate. The obtained results indicate the high potential of the material in both slow-release and cancer-targeted release of 6MP.


Assuntos
Antineoplásicos , Mercaptopurina , Mercaptopurina/farmacologia , Zinco/farmacologia , Sistemas de Liberação de Medicamentos , Durapatita/farmacologia , Antineoplásicos/farmacologia , Íons , Concentração de Íons de Hidrogênio
2.
Insects ; 15(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38392509

RESUMO

The advancement of nanotechnology poses a real risk of insect exposure to nanoparticles (NPs) that can enter the digestive system through contaminated food or nanopesticides. This study examines whether the exposure of model insect species-Acheta domesticus-to increasing graphene oxide (GO) and silver nanoparticle (AgNP) concentrations (2, 20, and 200 ppm and 4, 40, and 400 ppm, respectively) could change its digestive functions: enzymes' activities, food consumption, and assimilation. We noticed more pronounced alterations following exposure to AgNPs than to GO. They included increased activity of α-amylase, α-glucosidase, and lipase but inhibited protease activity. Prolonged exposure to higher concentrations of AgNPs resulted in a significantly decreased food consumption and changed assimilation compared with the control in adult crickets. A increase in body weight was observed in the insects from the Ag4 group and a decrease in body weight or no effects were observed in crickets from the Ag40 and Ag400 groups (i.e., 4, 40, or 400 ppm of AgNPs, respectively), suggesting that even a moderate disturbance in nutrient and energy availability may affect the body weight of an organism and its overall condition. This study underscores the intricate interplay between NPs and digestive enzymes, emphasizing the need for further investigation to comprehend the underlying mechanisms and consequences of these interactions.

3.
Small Methods ; : e2301681, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38344884

RESUMO

Incorporating photoswitchable moieties into the molecular design of supramolecular architectures provides unique opportunities for controlling their morphology and functionality via optical stimuli. Harnessing geometrical and electrical changes in response to multiple external stimuli on the molecular level to modulate properties remains a fundamental challenge. Herein, the reversible formation of the aggregates of l-tyrosine E-azobenzene-tetracarboxamide (E-ABT) is shown to be finely controlled by light, solvent, or chemical additives. The resulting products differ not only in their overall morphology and supramolecular interactions, but also in their intrinsic chirality, that is, depending on the conditions applied, self-assembly yields chiral columns or π-stacked "achiral" oligomers. This report shows the potential of rational monomer design to achieve controlled self-assembly by stimuli of choice and paves the way toward the use of multi-responsive, sterically hindered azo-benzene aggregates in materials chemistry and nanotechnology.

4.
Int J Mol Sci ; 24(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37629006

RESUMO

The use of nanoparticles like graphene oxide (GO) in nanocomposite industries is growing very fast. There is a strong concern that GO can enter the environment and become nanopollutatnt. Environmental pollutants' exposure usually relates to low concentrations but may last for a long time and impact following generations. Attention should be paid to the effects of nanoparticles, especially on the DNA stability passed on to the offspring. We investigated the multigenerational effects on two strains (wild and long-lived) of house cricket intoxicated with low GO concentrations over five generations, followed by one recovery generation. Our investigation focused on oxidative stress parameters, specifically AP sites (apurinic/apyrimidinic sites) and 8-OHdG (8-hydroxy-2'-deoxyguanosine), and examined the global DNA methylation pattern. Five intoxicated generations were able to overcome the oxidative stress, showing that relatively low doses of GO have a moderate effect on the house cricket (8-OHdG and AP sites). The last recovery generation that experienced a transition from contaminated to uncontaminated food presented greater DNA damage. The pattern of DNA methylation was comparable in every generation, suggesting that other epigenetic mechanisms might be involved.


Assuntos
Poluentes Ambientais , Gryllidae , Nanopartículas , Animais , Gryllidae/genética , 8-Hidroxi-2'-Desoxiguanosina , DNA
5.
Langmuir ; 39(34): 12124-12131, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37586085

RESUMO

A suspension of single-walled carbon nanohorn (SWCNH) aggregates with a size of approx. 50 nm was used to create a floating film at the water-air interface. The film was then transferred onto large-area quartz substrates using the Langmuir-Schaefer technique at varied surface pressures. The packaging and arrangement of SWCNHs in the film can be controlled during the process. The resulting films' optical and electrical properties were investigated, and the highest electrical conductivity and figure of merit parameter values were observed for the film transferred at surface pressure near the collapse point. These films had a surface density of less than 5 µg cm-2, making them ideal for use in ultra-light sensors, supercapacitors, and photovoltaic cell electrodes. The preparation and properties of the Langmuir-Schaefer films of carbon nanohorns are reported for the first time.

6.
Materials (Basel) ; 16(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37374542

RESUMO

Mercaptopurine is one of the drugs used in the treatment of acute lymphoblastic leukemia. A problem with mercaptopurine therapy is its low bioavailability. This problem can be solved by preparing the carrier that releases the drug in lower doses but over a longer period of time. In this work, polydopamine-modified mesoporous silica with adsorbed zinc ions was used as a drug carrier. SEM images confirm the synthesis of spherical carrier particles. The particle size is close to 200 nm, allowing for its use in intravenous delivery. The zeta potential values for the drug carrier indicate that it is not prone to agglomeration. The effectiveness of drug sorption is indicated by a decrease in the zeta potential and new bands in the FT-IR spectra. The drug was released from the carrier for 15 h, so all of the drug can be released during circulation in the bloodstream. The release of the drug from the carrier was sustained, and no 'burst release' was observed. The material also released small amounts of zinc, which are important in the treatment of the disease because these ions can prevent some of the adverse effects of chemotherapy. The results obtained are promising and have great application potential.

7.
Macromol Rapid Commun ; 44(5): e2200767, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36394181

RESUMO

Hydrogen-bonded polymers are a class of highly dynamic supramolecular aggregates, whose self-assembly may be tuned by very mild external or internal stimuli. However, the rational design of chiral supramolecules remains challenging especially when flexible components are involved. The combination of the inherent weakness and dynamic nature of the intermolecular bonds that hold together such assemblies with unrestricted molecular motions introduces additional factors which may affect the self-assembly process. In this report, the self-assembly of four amino acid-derived chiral biphenyldiimides into open-chain 1D supramolecular polymers is presented. While the primary driving force, COOH···HOOC hydrogen bonding, is responsible for the polymer growth in all cases, the amino acid side chains play an important role in either stabilizing or destabilizing the assemblies obtained, as deduced from studies of the thermodynamics of the self-assembly process. Furthermore, substantial differences in the structural factors governing the polymerization process between dynamic liquid and static solid are found. This work demonstrates the potential of the rather unexplored class of diimide-based organic dyes in the formation of well-organized chiral supramolecular assemblies with tunable properties.


Assuntos
Aminoácidos , Polímeros , Polímeros/química , Termodinâmica , Polimerização , Ligação de Hidrogênio
8.
Sci Rep ; 11(1): 15969, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354182

RESUMO

The present study explored the correlation between the photocatalytic activity toward hydrogen production of the graphene-based materials and graphene oxide (GO) morphology. In this work we applied the technique based on the combination of time-dependent sonication and iterative centrifugation cascades, which were designed to achieve nanosheets size and the number of layers selection. First such obtained GO dispersions were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM) and optical spectroscopy. Those combined measurements showed that the intensity of the π-π peak at 230 nm seems to be very sensitive to the number of layers of nanosheets. Next, GO dispersions were used to establish influence of the size and the number of layers of GO flakes on the photocatalytic hydrogen production in the photocatalytic system, containing eosin Y as a sensitizer, triethanolamine as a sacrificial electron donor, and CoSO4 as precatalyst. The H2 production efficiency varied by a factor of 3.7 for GO dispersions sonicated for various amount of time. Interestingly it was found that too long ultrasound treatment had negative impact on the GO enhancement of hydrogen production which was related to the fragmentation of GO flakes. The photocatalytic system produced the highest amount of H2 when graphene oxide occurs as monolayers and efficiency becomes lower with the decrease of GO sheets size. Our results demonstrate the importance of optimizing the size and the number of layers of the GO flakes prior to preparation of GO-based materials.

9.
Int J Mol Sci ; 22(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065593

RESUMO

Interest in graphene oxide nature and potential applications (especially nanocarriers) has resulted in numerous studies, but the results do not lead to clear conclusions. In this paper, graphene oxide is obtained by multiple synthesis methods and generally characterized. The mechanism of GO interaction with the organism is hard to summarize due to its high chemical activity and variability during the synthesis process and in biological buffers' environments. When assessing the biocompatibility of GO, it is necessary to take into account many factors derived from nanoparticles (structure, morphology, chemical composition) and the organism (species, defense mechanisms, adaptation). This research aims to determine and compare the in vivo toxicity potential of GO samples from various manufacturers. Each GO sample is analyzed in two concentrations and applied with food. The physiological reactions of an easy model Acheta domesticus (cell viability, apoptosis, oxidative defense, DNA damage) during ten-day lasting exposure were observed. This study emphasizes the variability of the GO nature and complements the biocompatibility aspect, especially in the context of various GO-based experimental models. Changes in the cell biomarkers are discussed in light of detailed physicochemical analysis.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Grafite/química , Grafite/toxicidade , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Gryllidae/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/toxicidade , Oxirredução/efeitos dos fármacos , Óxidos/metabolismo
10.
Sci Total Environ ; 788: 147801, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34022572

RESUMO

This study aimed to identify the physiological responses of house cricket females following short-term exposure to relatively low dietary doses of graphene oxide (GO, 20 µg · g-1 food), silver (Ag, 400 µg · g-1 food) nanoparticles (NPs), or graphene oxide­silver nanoparticle composite (GO-AgNPs, 20: 400 µg · g-1 food). Energy intake and distribution were measured on the third, sixth, and tenth day. A semi-quantitative API®ZYM assay of digestive enzyme fingerprints was performed on the third and tenth day of continuous treatment. Physicochemical properties of the NPs were obtained by combining SEM, EDX spectrometry, AFM, and DLS techniques. The obtained results showed decreased energy consumption, particularly assimilation as an early response to dietary NPs followed by compensatory changes in feeding activity leading to the same consumption and assimilation throughout the experimental period (10 days). The increased activities of digestive enzymes in NP-treated females compared to the control on the third day of the experiment suggest the onset of compensatory reactions of the day. Moreover, the insects treated with GO-AgNP composite retained more body water, suggesting increased uptake. The observed changes in the measured physiological parameters after exposure to NPs are discussed in light of hormesis.


Assuntos
Gryllidae , Nanopartículas Metálicas , Animais , Feminino , Hormese , Nanopartículas Metálicas/toxicidade , Prata/toxicidade
11.
Phys Chem Chem Phys ; 22(41): 24133, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33057562

RESUMO

Correction for 'The influence of diameter of multiwalled carbon nanotubes on mechanical, optical and electrical properties of Langmuir-Schaefer films' by Karol Rytel et al., Phys. Chem. Chem. Phys., 2020, DOI: .

12.
Phys Chem Chem Phys ; 22(39): 22380-22389, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32996522

RESUMO

In this paper results of a study of mechanical, optical and electrical properties of thin films made of multiwall carbon nanotubes (MWCNT) of various types were reported. The MWCNT films were obtained on quartz substrates using the Langmuir-Schaefer (LS) method. A gradual increase in transmittance was recorded with decreasing diameters of MWCNT used. Moreover, a blue shift of the π-plasmon band position was observed with increasing MWCNT diameter. In all tested films, anisotropy of electrical surface resistivity was revealed, which was more pronounced for MWCNT of low diameters, except for the MWCNT sample of the smallest diameters. Results of oscillatory barrier measurements of various MWCNT films at the air water interface were used to calculate the complex compression and shear moduli. It is worth emphasizing that the values of these moduli were obtained for the first time for carbon nanotubes films. Moreover, the obtained results allowed identification of the main factor blocking the alignment process, which turned out to be the shear loss tangent.

13.
Materials (Basel) ; 13(10)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408475

RESUMO

The earlier obtained organosilicon derivatives of rapeseed oil were used for the production of coatings protecting steel surface against corrosion. Vegetable oils have been hitherto used for temporary protection of metals against corrosion, while thanks to the synthesis of appropriate organosilicon derivatives, it is now possible to create durable protective coatings. Due to the presence of alkoxysilyl groups and the use of the sol-gel process, the coatings obtained were bonded to the steel surface. The effectiveness of the coatings was checked by electrochemical methods and steel surface analysis.

14.
Nanomaterials (Basel) ; 10(5)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443522

RESUMO

The arrangement of two-dimensional graphene oxide sheets has been shown to influence physico-chemical properties of the final bulk structures. In particular, various graphene oxide microfibers remain of high interest in electronic applications due to their wire-like thin shapes and the ease of hydrothermal fabrication. In this research, we induced the internal ordering of graphene oxide flakes during typical hydrothermal fabrication via doping with Calcium ions (~6 wt.%) from the capillaries. The Ca2+ ions allowed for better graphene oxide flake connections formation during the hydrogelation and further modified the magnetic and electric properties of structures compared to previously studied aerogels. Moreover, we observed the unique pseudo-porous fiber structure and flakes connections perpendicular to the long fiber axis. Pulsed electron paramagnetic resonance (EPR) and conductivity measurements confirmed the denser flake ordering compared to previously studied aerogels. These studies ultimately suggest that doping graphene oxide with Ca2+ (or other) ions during hydrothermal methods could be used to better control the internal architecture and thus tune the properties of the formed structures.

15.
Materials (Basel) ; 13(3)2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028708

RESUMO

This article presents the results of the cross-linking of oxidized flake graphene (GO) using hydrazine at room temperature. Conducting the process at temperatures up to 30 °C allowed to eliminate the phenomenon of thermal GO reduction to its non-oxidized form. In addition, based on the Infrared and Raman spectroscopy as well as X-ray photoelectron spectroscopy (XPS) analysis, the cross-linking ability of GO was observed depending on its size and degree of oxidation. These parameters were associated with selected physicochemical and electrical properties of obtained 3D structures. Three GO flakes sizes were tested in three different oxidation degrees. It was shown that, regardless of the size of GO, it is crucial to achieve a specific oxidation degree threshold which for the conducted tests was a >20% share of oxygen atoms in the whole structure. This value determines the ability to cross-link with hydrazine thanks to which it is possible to synthesize the spatial structure in which the π-π interactions among individual flakes are significantly reduced. This directly translates into the fact that the 3D structure shows an electrical resistance value in the range of 4-103 Ω, depending on the size and oxidation degree of the used material. The explanation of this phenomenon related to the electrical conductivity of 3D structures was confirmed based on the molecular modeling of the chemical structures.

16.
J Hazard Mater ; 305: 30-40, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26642444

RESUMO

Graphene and its oxidized form-graphene oxide (GO) have become exceptionally popular in industry and medicine due to their unique properties. However, there are suspicions that GO can cause adverse effects. Therefore, comprehensive knowledge on its potential toxicity is essential. This research assesses the in vivo toxicity of pure and manganese ion contaminated GO, which were injected into the hemolymph of Acheta domesticus. The activity of catalase (CAT) and gluthiathione peroxidases (GSTPx) as well as heat shock protein (HSP 70) and total antioxidant capacity (TAC) levels were measured at consecutive time points-1h, 24h, 48h and 72h after injection. Neither pure GO nor GO contaminated with manganese were neutral to the organism. The results proved the intensification of oxidative stress after GO injection, which was confirmed by increased enzyme activity. The organism seems to cope with this stress, especially in the first 24h after injection. In the following days, increasing HSP 70 levels were observed, which might suggest the synthesis of new proteins and the removal of old and damaged ones. With that in mind, the potential toxicity of the studied material, which could lead to serious and permanent damage to the organism, should still be taken into consideration.


Assuntos
Grafite/toxicidade , Manganês/toxicidade , Nanoestruturas/toxicidade , Óxidos/toxicidade , Animais , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Gryllidae , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Insetos/metabolismo , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...